Microearthquake spectra from the Anza, California, seismic network: site response and source scaling

Bulletin of the Seismological Society of America




We analyzed spectra of local microearthquakes recorded by the Anza, California, seismic network to isolate the effects of site response and to investigate the scaling of source parameters for small earthquakes. Spectra of microearthquakes (M < 2; Mo< 1019 dyne-cm) at Anza have shapes characteristic of the receiver sites and are generally independent of the source region. Thus, the site response is a major conditioner of the observed spectral shape. To remove the effects of site response from the spectra of a M ∼ 3 event and isolate its source spectrum, we divided by the spectra of an adjacent aftershock used as an empirical Green's function event. The spectral ratios indicate that the apparent corner frequencies of small earthquakes (Mo < 1019dyne-cm) observed at even the high-fmax stations on hard rock are much lower than the source corner frequencies. The spectral ratios are consistent with stress drop remaining constant with decreasing seismic moment, for events with moments as small as 1018 dyne-cm. The spectral ratios display remarkable agreement between sites which showed vast differences in their original spectra, indicating that the spectral division effectively removed the site response. The source spectrum of the M ∼ 3 event has a high-frequency spectral fall-off of about ω−2. An apparent dependence of high-frequency fall-off with seismic moment in the original spectra can also be explained by the effects of site response. The difference between the P- and S-wave corner frequencies and high-frequency roll-offs in the observed spectra for these events is the result of the site response and is not a source property. The shapes of the spectra of microearthquakes at Anza can largely be explained by attenuation at shallow depth with a frequency-independent Q. For some sites, near-surface resonances are also apparent in the spectra of microearthquakes. It is indicated by t* values determined for each site that Qp ∼ Qsfor the shallow low-Q layer. Further evidence of low near-surface Q is observed in the anomalous spectra of an unusually shallow earthquake (source depth ∼ 1 km) in the network. The spectra from this shallow event are depleted in high-frequency energy at most stations, relative to those of deeper events. This observation can be explained by a low-Q surficial zone. For stations of the network situated on alluvium, this low-Q layer has a maximum thickness of about 3 km and maximum P- and S-wave Q values of 30 to 50.

Additional publication details

Publication type:
Publication Subtype:
Journal Article
Microearthquake spectra from the Anza, California, seismic network: site response and source scaling
Series title:
Bulletin of the Seismological Society of America
Year Published:
Seismological Society of America
29 p.
First page:
Last page: