thumbnail

Post-11,000-year volcanism at Medicine Lake Volcano, Cascade Range, northern California

Journal of Geophysical Research
By: , and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Eruptive activity during the past 11,000 years at Medicine Lake volcano has been episodic. Eight eruptions produced about 5.3 km3 of basaltic lava during an interval of a few hundred years about 10 500 years B.P. After a hiatus of about 6000 years, eruptive activity resumed with a small andesite eruption at about 4300 years B.P. Approximately 2.5 km3 of lava with compositions ranging from basalt to rhyolite vented in nine eruptions during an interval of about 3400 years in late Holocene time. The most recent eruption occurred about 900 years B.P. A compositional gap in SiO2 values of erupted lavas occurs between 58 and 63%. The gap is spanned by chilled magmatic inclusions in late Holocene silicic lavas. Late Holocene andesitic to rhyolitic lavas were probably derived by fractionation, assimilation, and mixing from high-alumina basalt parental magma, possibly from basalt intruded into the volcano during the early mafic episode. Eruptive activity is probably driven by intrusions of basalt that occur during E-W stretching of the crust in an extensional tectonic environment. Vents are typically aligned parallel or subparallel to major structural features, most commonly within 30?? of north. Intruded magma should provide adequate heat for commercial geothermal development if sufficient fluids can be found. -from Authors
Publication type Article
Publication Subtype Journal Article
Title Post-11,000-year volcanism at Medicine Lake Volcano, Cascade Range, northern California
Series title Journal of Geophysical Research
Volume 95
Issue B12
Year Published 1990
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Geophysical Research
Google Analytic Metrics Metrics page
Additional publication details