Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia

Review of Palaeobotany and Palynology
By:  and 

Links

Abstract

Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component parts, i.e. fragments of cell walls and fillings. The absence of differences in particle size between the peat and lignite also indicate little compaction of organic components; rather an extreme loss in water content and pore space has occurred from between the particles of organic material. ?? 1992.
Publication type Article
Publication Subtype Journal Article
Title Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia
Series title Review of Palaeobotany and Palynology
DOI 10.1016/0034-6667(92)90027-E
Volume 72
Issue 3-4
Year Published 1992
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Review of Palaeobotany and Palynology
First page 199
Last page 227
Google Analytic Metrics Metrics page
Additional publication details