Geophysical characteristics of the hydrothermal systems of Kilauea volcano, Hawaii

Geothermics
By:

Links

Abstract

Clues to the overall structure of Kilauea volcano can be obtained from spatial studies of gravity, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, high P-wave-velocity rocks at depths of about 2 km less. The gravity and seismic velocity studies indicate that the rift structures are broad, extending farther to the north than to the south of the surface features. The magnetic data give more definition to the rift structures by allowing separation into a narrow, highly-magnetized, shallow zone and broad, flanking, magnetic lows. The patterns of gravity, magnetic variations, and seismicity document the southward migration of the upper cast rift zone. Regional, hydrologic features of Kilauea can be determined from resistivity and self-potential studies. High-level groundwater exists beneath Kilauea summit to elevations of +800 m within a triangular area bounded by the west edge of the upper southwest rift zone, the east edge of the upper east rift zone, and the Koa'c fault system. High-level groundwater is present within the east rift zone beyond the triangular summit area. Self-potential mapping shows that areas of local heat produce local fluid circulation in the unconfined aquifer (water table). The dynamics of Kilauea eruptions are responsible for both the source of heat and the fracture permeability of the hydrothermal system. Shallow seismicity and surface deformation indicate that magma is intruding and that fractures are forming beneath the rift zones and summit area. Magma supply estimates are used to calculate the rate of heat input to Kilauea's hydrothermal systems. Heat flows of 370-820 mW/m2 are calculated from deep wells within the lower east rift zone. The estimated heat input rate for Kilauea of 9 gigawatts (GW) is at least 25 times higher than the conductive heat loss as estimated from the heat flow in wells extrapolated over the area of the summit caldera and rift zones. Heat must be dissipated by another mechanism, or the heat input rate estimates are much too high. ?? 1993.
Publication type Article
Publication Subtype Journal Article
Title Geophysical characteristics of the hydrothermal systems of Kilauea volcano, Hawaii
Series title Geothermics
DOI 10.1016/0375-6505(93)90004-7
Volume 22
Issue 4
Year Published 1993
Language English
Publisher Elsevier
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Geothermics
First page 271
Last page 299
Google Analytic Metrics Metrics page
Additional publication details