Oblique synoptic images, produced from digital data, display strong evidence of a "new" caldera in southwestern Guatemala

Journal of Volcanology and Geothermal Research
By: , and 


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core


The synoptic view of broad regions of the Earth's surface as displayed in Landsat and other satellite images has greatly aided in the recognition of calderas, ignimbrite plateaus and other geologic landforms. Remote-sensing images that include visual representation of depth are an even more powerful tool for geologic interpretation of landscapes, but their use has been largely restricted to the exploration of planets other than Earth. By combining Landsat images with digitized topography, we have generated regional oblique views that display compelling evidence for a previously undocumented late-Cenozoic caldera within the active volcanic zone of southwestern Guatemala. This "new" caldera, herein called Xela, is a depression about 30 km wide and 400-600 m deep, which includes the Quezaltenango basin. The caldera depression is breached only by a single river canyon. The caldera outline is broadly circular, but a locally scalloped form suggests the occurrence of multiple caldera-collapse events, or local slumping of steep caldera walls, or both. Within its northern part, Xela caldera contains a toreva block, about 500 m high and 2 km long, that may be incompletely foundered pre-caldera bedrock. Xela contains several post-caldera volcanoes, some of which are active. A Bouguer gravity low, tens of milligals in amplitude, is approximately co-located with the proposed caldera. The oblique images also display an extensive plateau that dips about 2?? away from the north margin of Xela caldera. We interpret this landform to be underlain by pyroclastic outflow from Xela and nearby Atitla??n calderas. Field mapping by others has documented a voluminous rhyolitic pumiceous fallout deposit immediately east of Xela caldera. We speculate that Xela caldera was the source of this deposit. If so, the age of at least part of the caldera is between about 84 ka and 126 ka, the ages of deposits that stratigraphically bracket this fallout. Most of the floor of Xela caldera is covered with Los Chocoyos pyroclastics, 84-ka deposits erupted from Atitla??n caldera. Oblique images produced from digital data are unique tools that can greatly facilitate initial geologic interpretation of morphologically young volcanic (and other) terrains where field access is limited, especially because conventional visual representations commonly lack depth perspective and may cover only part of the region of interest. ?? 1993.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Oblique synoptic images, produced from digital data, display strong evidence of a "new" caldera in southwestern Guatemala
Series title Journal of Volcanology and Geothermal Research
Volume 55
Issue 3-4
Year Published 1993
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Volcanology and Geothermal Research
First page 217
Last page 224
Google Analytic Metrics Metrics page