Uranium-series disequilibrium, sedimentation, diatom frustules, and paleoclimate change in Lake Baikal

Earth and Planetary Science Letters
By: , and 


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core


The large volume of water, approximately one-fifth of the total surface fresh water on the planet, contained in Lake Baikal in southeastern Siberia is distinguished by having a relatively high concentration of uranium (ca. 2 nM), and, together with the surface sediments, an unusually high 234U/238U alpha activity ratio of 1.95. About 80% of the input of uranium to the lake, with a 234U/238U ratio of 2.0, comes from the Selenga River. Profiles of uranium, as well as the extent of isotopic disequilibrium in a 9 m sediment core collected on Academic Ridge, generally show high values during interglacial periods corresponding to high diatom frustule numbers (DiFr) and biogenic silica (BSi) data that have been reported elsewhere. During glacial periods (low DiFr and BSi), uranium progeny (234U and 230Th) were in secular equilibrium with low concentrations of their parent 238U. Radionuclide distributions were interpreted in terms of a quantitative model allowing for adsorption of riverine inputs of uranium onto two classes of sedimenting particles with differing 238U/232Th ratios and uranium progeny in secular equilibrium. If the 234U/238U activity ratio of adsorbed uranium has remained constant, mean sedimentation rates can be independently estimated as 3.6 ?? 0.6 and 3.7 ?? 0.9 cm ?? kyr-1 for the decay of 234U and in-growth of 230Th, respectively. These rates are consistent with a mean rate of 3.76 cm ?? kyr-1, calculated by optimization of the correspondence between adsorbed 238U and ??18O in dated oceanic sediments. The adsorbed uranium apparently tracks variable river flow during interglacials and is drastically reduced during periods of glaciation. Evidently, uranium has not been significantly redistributed within Baikal sediments over at least the past 250 kyr and is a unique, biologically non-essential, tracer for climate-sensitive processes, which provide their own internal geochronometers, potentially useful for ages up to 1 Myr BP.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Uranium-series disequilibrium, sedimentation, diatom frustules, and paleoclimate change in Lake Baikal
Series title Earth and Planetary Science Letters
Volume 142
Issue 1-2
Year Published 1996
Language English
Contributing office(s) Woods Hole Coastal and Marine Science Center
Description 14 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Earth and Planetary Science Letters
First page 29
Last page 42
Google Analytic Metrics Metrics page