thumbnail

The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile

Tectonics
By:

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Middle Proterozoic rocks underlying the Andes in western Bolivia, western Argentina, and northern Chile and Early Proterozoic rocks of the Arequipa massif in southern Peru?? from the Arequipa-Antofalla craton. These rocks are discontinuously exposed beneath Mesozoic and Cenozoic rocks, but abundant crystalline clasts in Tertiary sedimentary rocks in the western altiplano allow indirect samples of the craton. Near Berenguela, western Bolivia, the Oligocene and Miocene Mauri Formation contains boulders of granodiorite augen gneiss (1171??20 Ma and 1158??12 Ma; U-Pb zircon), quartzose gneiss and granofels that are inferred to have arkosic protoliths (1100 Ma source region; U-Pb zircon), quartzofeldspathic and mafic orthogneisses that have amphibolite- and granulite-facies metamorphic mineral assemblages (???1080 Ma metamorphism; U-Pb zircon), and undeformed granitic rocks of Phanerozoic(?) age. The Middle Proterozoic crystalline rocks from Berenguela and elsewhere in western Bolivia and from the Middle Proterozoic Bele??n Schist in northern Chile generally have present-day low 206Pb/204Pb (<18.0), elevated 207Pb/204Pb (> 15.57), and elevated 208Pb/204Pb (37.2 to 50.7) indicative of high time-averaged Th/U values. The Middle Proterozoic rocks in general have higher presentday 206Pb/204Pb values than those of the Early Proterozoic rocks of the Arequipa massif (206Pb/204Pb between 16.1 and 17.1) but lower than rocks of the southern Arequipa-Antofalla craton (206Pb/204Pb> 18.5), a difference inferred to reflect Grenvillian granulite metamorphism. The Pb isotopic compositions for the various Proterozoic rocks lie on common Pb isotopic growth curves, implying that Pb incorporated in rocks composing the Arequipa-Antofalla craton was extracted from a similar evolving Pb isotopic reservoir. Evidently, the craton has been a coherent terrane since the Middle Proterozoic. Moreover, the Pb isotopic compositions for the Arequipa-Antofalla craton overlap those of the Amazon craton, thereby supporting a link between these cratons and seemingly precluding part of the Arequipa-Antofalla craton from being a detached fragment of another craton such as eastern Laurentia, which has been characterized by a different U/Pb history. Pb isotopic compositions for the Arequipa-Antofalla craton are, furthermore, distinct from those of the Proterozoic basement in the Precordillera terrane, western Argentina, indicating a Pb isotopic and presumably a tectonic boundary between them. The Pb isotopic compositions for the Precordillera basement are similar to those of eastern Laurentia, and support other data indicating that these rocks are a detached fragment of North America. Finally, the distinct Pb isotopic evolution history of the Arequipa-Antofalla craton and eastern Laurentia require minor modification to tectonic models linking eastern North America-Scotland to the oroclinal bend in western South America.
Publication type Article
Publication Subtype Journal Article
Title The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile
Series title Tectonics
Volume 15
Issue 4
Year Published 1996
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Tectonics
First page 827
Last page 842
Google Analytic Metrics Metrics page
Additional publication details