thumbnail

Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars

Journal of Geophysical Research E: Planets
By:

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Geologic mapping and crater counting in Chryse and Acidalia Planitiae (GAP) reveal five major sedimentary deposits of Hesperian to Early Amazonian age, including (1) a mass flow deposited during the Early Hesperian near Deuteronilus Mensae (northeast of the map region) that may have resulted from the carving of Kasei Valles, >3000 km southwest of the exposed part of the deposit; (2) knobby plains material consisting of channel (likely; from Simud and Tiu Valles and possibly Ares and Shalbatana Valles) and mass-wasting deposits in central and eastern CAP; (3) material largely from Maja and Ares Valles emplaced in at least western and southern CAP (outcrops in southern Chryse Planitia developed thermokarst); (4) a thin mass flow covering much of southern Chryse Planitia that emanated from Simud and Tiu Valles; and (5) a thick, extensive (perhaps >3500 km across) mass flow deposit in central and northern CAP derived from accumulation and backflow of the preceding thin mass flow or perhaps melting of polar deposits. Other possible deposits may not be recognizable owing to burial by younger materials or a lack of morphologic signature. Various associated landforms appear to be consistent with the mass flow interpretations, including lobate and linear scarps along deposit edges, fractures related to desiccation of thick sediments, troughs, and ridges near the edges of the deposit indicative of secondary mass movement and deformation, pitted domes and fissure-fed flows possibly formed by sedimentary (mud) eruptions, and longitudinal channel grooves perhaps formed by roller vortices. No convincing evidence for paleoshorelines or stagnant ice sheets is found in CAP. These findings suggest that mass flow and hyperconcentrated flooding may have been the predominant processes of outflow-channel dissection in CAP. Elsewhere in the northern plains, similar landforms are prevalent. The mass flow interpretation does not require either multiple episodes of extraordinarily high water-discharge rates achieved by freeing huge volumes of water from the crust, repetitive recycling of immense volumes of water into highland aquifers at the heads of Chryse channels, or profound climate change. Mars Pathfinder will most likely land on and inspect the surface of the thin mass flow that originated from the canyons of Simud and Tiu Valles.
Publication type Article
Publication Subtype Journal Article
Title Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars
Series title Journal of Geophysical Research E: Planets
Volume 102
Issue E2
Year Published 1997
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Geophysical Research E: Planets
First page 4131
Last page 4149
Google Analytic Metrics Metrics page
Additional publication details