Structural control of coalbed methane production in Alabama

International Journal of Coal Geology
By:  and 

Links

Abstract

Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.
Publication type Article
Publication Subtype Journal Article
Title Structural control of coalbed methane production in Alabama
Series title International Journal of Coal Geology
DOI 10.1016/S0166-5162(98)00034-2
Volume 38
Issue 1-2
Year Published 1998
Language English
Publisher Elsevier Sci B.V.
Publisher location Amsterdam, Netherlands
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title International Journal of Coal Geology
First page 89
Last page 113
Google Analytic Metrics Metrics page
Additional publication details