thumbnail

The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, U.S.A.

European Journal of Mineralogy
By:  and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Sandstones along the northern portion of the Precambrian Mid-continent Rift System (MRS) have been petrographically and chemically analyzed for major elements and a variety of trace elements, including the REE. After the initial extrusion of the abundant basalts along the MRS, dominantly volcaniclastic sandstones of the Oronto Group were deposited. These volcaniclastic sandstones are covered by quartzose and subarkosic sandstones of the Bayfield Group. Thus the sandstones of the Oronto Group were derived from previously extruded basalts, whereas, the sandstones of the Bayfield Group were derived from Precambrian granitic gneisses located on the rift flanks. The chemical variation of these sandstones closely reflects the changing detrital modes with time. The elemental composition of the sandstones confirms the source lithologies suggested by the mineralogy and clasts. The Oronto Group sandstones contain lower ratios of elements concentrated in silicic source rocks (La or Th) relative to elements concentrated in basic source rocks (Co, Cr, or Sc) than the Bayfield Group. Also, the average size of the negative Eu anomaly of the sandstones of the Oronto Group is significantly less (Eu/Eu* mean ?? standard deviation = 0.79 ?? 0.13) than that of the Bayfield Group (mean + standard deviation = 0.57 ?? 0.09), also suggesting a more basic source for the former than the latter. Mixing models of elemental ratios give added insight as to the evolution of the rift. These models suggest that the volcanistic sandstones of the lower portion of the Oronto Group are derived from about 80 to 90 percent basalt and 10 to 20 percent granitoids. The rest of the Oronto Group and the lower to middle portion of the Bayfield Group could have formed by mixing of about 30 to 60 percent basalt and 40 to 70 percent granitoids. The upper portion of the Bayfield Group is likely derived from 80 to 100 percent granitoids and zero to 20 percent basalt.
Publication type Article
Publication Subtype Journal Article
Title The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, U.S.A.
Series title European Journal of Mineralogy
Volume 10
Issue 5
Year Published 1998
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title European Journal of Mineralogy
First page 987
Last page 1002
Google Analytic Metrics Metrics page
Additional publication details