Highest pluvial-lake shorelines and Pleistocene climate of the western Great Basin

Quaternary Research
By:

Links

Abstract

Shoreline altitudes of several pluvial lakes in the western Great Basin of North America record successively smaller lakes from the early to the late Pleistocene. This decrease in lake size indicates a long-term drying trend in the regional climate that is not seen in global marine oxygen-isotope records. At +70 m above its late Pleistocene shoreline, Lake Lahontan in the early middle Pleistocene submerged some basins previously thought to have been isolated. Other basins known to contain records of older pluvial lakes that exceeded late Pleistocene levels include Columbus-Fish Lake (Lake Columbus-Rennie), Kobeh-Diamond (Lakes Jonathan and Diamond), Newark, Long (Lake Hubbs), and Clover. Very high stands of some of these lakes probably triggered overflows of previously internally drained basins, adding to the size of Lake Lahontan. Simple calculations based on differences in lake area suggest that the highest levels of these pluvial lakes required a regional increase in effective moisture by a factor of 1.2 to 3 relative to late Pleistocene pluvial amounts (assuming that effective moisture is directly proportional to the hydrologic index, or lake area/tributary basin area). These previously unknown lake levels reflect significant changes in climate, tectonics, and (or) drainage-basin configurations, and could have facilitated migration of aquatic species in the Great Basin.
Publication type Article
Publication Subtype Journal Article
Title Highest pluvial-lake shorelines and Pleistocene climate of the western Great Basin
Series title Quaternary Research
DOI 10.1006/qres.1999.2064
Volume 52
Issue 2
Year Published 1999
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Quaternary Research
First page 196
Last page 205
Google Analytic Metrics Metrics page
Additional publication details