Prediction of gas production using well logs, Cretaceous of north-central Montana

Mountain Geologist



  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core


Cretaceous gas sands underlie much of east-central Alberta and southern Saskatchewan, eastern Montana, western North Dakota, and parts of South Dakota and Wyoming. Estimates of recoverable biogenic methane from these rocks in the United States are as high as 91 TCF. In northern Montana, current production is localized around a few major structural features, while vast areas in between these structures are not being exploited. Although the potential for production exists, the lack of commercial development is due to three major factors: 1) the lack of pipeline infrastructure; 2) the lack of predictable and reliable rates of production; and 3) the difficulty in recognizing and selecting potentially productive gas-charged intervals. Unconventional (tight), continuous-type reservoirs, such as those in the Cretaceous of the northern Great Plains, are not well suited for conventional methods of formation evaluation. Pay zones frequently consist only of thinly laminated intervals of sandstone, silt, shale stringers, and disseminated clay. Potential producing intervals are commonly unrecognizable on well logs, and thus are overlooked. To aid in the identification and selection of potential producing intervals, a calibration system is developed here that empirically links the 'gas effect' to gas production. The calibration system combines the effects of porosity, water saturation, and clay content into a single 'gas-production index' (GPI) that relates the in-situ rock with production potential. The fundamental method for isolating the gas effect for calibration is a crossplot of neutron porosity minus density porosity vs gamma-ray intensity. Well-log and gas-production data used for this study consist of 242 perforated intervals from 53 gas-producing wells. Interval depths range from about 250 to 2400 ft. Gas volumes in the peak calendar year of production range from about 4 to 136 MMCF. Nine producing formations are represented. Producing-interval data show that porosity and gas production are closely linked to clay volume. Highest porosities and maximum gas production occur together at an intermediate clay content of about 12% (60 API). As clay volume exceeds 35% (130 API), minimum porosity required for production increases rapidly, and the number of potential producing intervals declines. Gas production from intervals where clay volume exceeds 50% is rare. Effective porosities of less than about 8% are probably inadequate for commercial gas production in these rocks regardless of clay content.

Additional publication details

Publication type:
Publication Subtype:
Journal Article
Prediction of gas production using well logs, Cretaceous of north-central Montana
Series title:
Mountain Geologist
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
Mountain Geologist
First page:
Last page: