Legacy of the California Gold Rush: Environmental geochemistry of arsenic in the southern Mother Lode Gold District

International Geology Review
By: , and 

Links

Abstract

Gold mining activity in the Sierra Nevada foothills, both recently and during the California Gold Rush, has exposed arsenic-rich pyritic rocks to weathering and erosion. This study describes arsenic concentration and speciation in three hydrogeologic settings in the southern Mother Lode Gold District: mineralized outcrops and mine waste rock (overburden); mill tailings submerged in a water reservoir; and lake waters in this monomictic reservoir and in a monomictic lake developing within a recent open-pit mine. These environments are characterized by distinct modes of rock-water interaction that influence the local transport and fate of arsenic. Arsenic in outcrops and waste rock occurs in arsenian pyrite containing an average of 2 wt% arsenic. Arsenic is concentrated up to 1300 ppm in fine-grained, friable, iron-rich weathering products of the arsenian pyrite (goethite, jarosite, copiapite), which develop as efflorescences and crusts on weathering outcrops. Arsenic is sorbed as a bidentate complex on goethite, and substitutes for sulfate in jarosite.

Submerged mill tailings obtained by gravity core at Don Pedro Reservoir contain arsenic up to 300 ppm in coarse sand layers. Overlying surface muds have less arsenic in the solid fraction but higher concentrations in porewaters (up to 500 μg/L) than the sands. Fine quartz tailings also contain up to 3.5 ppm mercury related to the ore processing. The pH values in sediment porewaters range from 3.7 in buried gypsum-bearing sands and tailings to 7 in the overlying lake sediments. Reservoir waters immediately above the cores contain up to 3.5 μg/L arsenic; lake waters away from the submerged tailings typically contain less than 1 μg/L arsenic.

Dewatering during excavation of the Harvard open-pit mine produced a hydrologic cone of depression that has been recovering toward the pre-mining groundwater configuration since mining ended in 1994. Aqueous arsenic concentrations in the 80 m deep pit lake are up to 1000 μg/L. Redistribution of the arsenic occurs during summer stratification, with highest concentrations at middle depths. The total mass of arsenic in the pit lake increases coinciding with early winter rains that erode, partially dissolve, and transport arsenic-bearing salts into the pit lake.

Arsenic concentration, speciation, and distribution in the Sierra Nevada foothills depend on many factors, including the lithologic sources of arsenic, climatic influences on weathering of host minerals, and geochemical characteristics of waters with which source and secondary minerals react. Oxidation of arsenian pyrite to goethite, jarosite, and copiapite causes temporary attenuation of arsenic during summer, when these secondary minerals accumulate; subsequent rapid dissemination of arsenic into the aqueous environment is caused by annual winter storms. As the population of the Mother Lode area grows, it is increasingly important to consider these effects during planning and development of land and groundwater resources.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Legacy of the California Gold Rush: Environmental geochemistry of arsenic in the southern Mother Lode Gold District
Series title International Geology Review
DOI 10.1080/00206810009465089
Volume 42
Issue 5
Year Published 2000
Language English
Publisher Taylor & Francis
Description 31 p.
First page 385
Last page 415
Country United States
State California
Other Geospatial Sierra Nevada foothills, Melones fault zone, Mother Lode Gold District
Google Analytic Metrics Metrics page
Additional publication details