Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone

Journal of Volcanology and Geothermal Research
By: , and 

Links

Abstract

The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b = 0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b = 1.3-1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5-8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both phenomena. The major b-value anomalies are located SSE of their parent reservoirs, in the direction of motion of the flank, suggesting that magma reservoirs leave an imprint in the mobile flank. We hypothesize that the extensive cracking may have been acquired when the anomalous parts of the South Flank, now several kilometers distant from the rift zone, were generated at the rift zone near persistent reservoirs. Since their generation, these volumes may have moved seaward, away from the rift, but earthquakes occurring in them still use the preexisting complex crack distribution. Along the decollement plane at 10 km depth, the b-values are exceptionally low (b = 0.5), suggesting faulting in a more homogeneous medium. ?? 2001 Elsevier Science B.V. All rights reserved.
Publication type Article
Publication Subtype Journal Article
Title Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone
Series title Journal of Volcanology and Geothermal Research
DOI 10.1016/S0377-0273(00)00263-8
Volume 106
Issue 1-2
Year Published 2001
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Volcanology and Geothermal Research
First page 23
Last page 37
Google Analytic Metrics Metrics page
Additional publication details