Trace metal concentrations in shallow ground water

Ground Water
By: , and 

Links

Abstract

Trace metal clean sampling and analysis techniques were used to examine the temporal patterns of Hg, Cu, and Zn concentrations in shallow ground water, and the relationships between metal concentrations in ground water and in a hydrologically connected river. Hg, Cu, and Zn concentrations in ground water ranged from 0.07 to 4.6 ng L−1, 0.07 to 3.10 μg L−1, and 0.17 to 2.18 μg L−1, respectively. There was no apparent seasonal pattern in any of the metal concentrations. Filtrable Hg, Cu, and Zn concentrations in the North Branch of the Milwaukee River ranged from below the detection limit to 2.65 ng Hg L−1,0.51 to 4.30 μg Cu L−1, and 0.34 to 2.33 μg Zn L−1. Thus, metal concentrations in ground water were sufficiently high to account for a substantial fraction of the filtrable trace metal concentration in the river. Metal concentrations in the soil ranged from 8 to 86 ng Hg g−1, 10 to 39 μg Cu g−1, and 15 to 84 μg Zn g−1. Distribution coefficients, KD, in the aquifer were 7900,22,000, and 23,000 L kg−1 for Hg, Cu, and Zn, respectively. These values were three to 40 times smaller than KD values observed in the Milwaukee River for suspended particulate matter.

Publication type Article
Publication Subtype Journal Article
Title Trace metal concentrations in shallow ground water
Series title Ground Water
DOI 10.1111/j.1745-6584.2001.tb02336.x
Volume 39
Issue 4
Year Published 2001
Language English
Publisher Wiley
Contributing office(s) Toxic Substances Hydrology Program
Description 7 p.
First page 485
Last page 491
Google Analytic Metrics Metrics page
Additional publication details