Fault structure and mechanics of the Hayward Fault, California from double-difference earthquake locations

Journal of Geophysical Research B: Solid Earth
By:  and 

Links

Abstract

The relationship between small-magnitude seismicity and large-scale crustal faulting along the Hayward Fault, California, is investigated using a double-difference (DD) earthquake location algorithm. We used the DD method to determine high-resolution hypocenter locations of the seismicity that occurred between 1967 and 1998. The DD technique incorporates catalog travel time data and relative P and S wave arrival time measurements from waveform cross correlation to solve for the hypocentral separation between events. The relocated seismicity reveals a narrow, near-vertical fault zone at most locations. This zone follows the Hayward Fault along its northern half and then diverges from it to the east near San Leandro, forming the Mission trend. The relocated seismicity is consistent with the idea that slip from the Calaveras Fault is transferred over the Mission trend onto the northern Hayward Fault. The Mission trend is not clearly associated with any mapped active fault as it continues to the south and joins the Calaveras Fault at Calaveras Reservoir. In some locations, discrete structures adjacent to the main trace are seen, features that were previously hidden in the uncertainty of the network locations. The fine structure of the seismicity suggests that the fault surface on the northern Hayward Fault is curved or that the events occur on several substructures. Near San Leandro, where the more westerly striking trend of the Mission seismicity intersects with the surface trace of the (aseismic) southern Hayward Fault, the seismicity remains diffuse after relocation, with strong variation in focal mechanisms between adjacent events indicating a highly fractured zone of deformation. The seismicity is highly organized in space, especially on the northern Hayward Fault, where it forms horizontal, slip-parallel streaks of hypocenters of only a few tens of meters width, bounded by areas almost absent of seismic activity. During the interval from 1984 to 1998, when digital waveforms are available, we find that fewer than 6.5% of the earthquakes can be classified as repeating earthquakes, events that rupture the same fault patch more than one time. These most commonly are located in the shallow creeping part of the fault, or within the streaks at greater depth. The slow repeat rate of 2–3 times within the 15-year observation period for events with magnitudes around M = 1.5 is indicative of a low slip rate or a high stress drop. The absence of microearthquakes over large, contiguous areas of the northern Hayward Fault plane in the depth interval from ∼5 to 10 km and the concentrations of seismicity at these depths suggest that the aseismic regions are either locked or retarded and are storing strain energy for release in future large-magnitude earthquakes.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Fault structure and mechanics of the Hayward Fault, California from double-difference earthquake locations
Series title Journal of Geophysical Research B: Solid Earth
DOI 10.1029/2000JB000084
Volume 107
Issue B3
Year Published 2002
Language English
Publisher American Geophysical Union
Contributing office(s) Earthquake Science Center
Description 15 p.
First page ESE 3-1
Last page ESE 3-15
Country United States
State California
Other Geospatial Hayward Fault
Google Analytic Metrics Metrics page
Additional publication details