Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA

Marine Geology
By: , and 

Links

Abstract

Digital, single-channel, high-resolution seismic reflection profiles were acquired from the insular continental shelf of North Carolina, USA along a data grid extending from Oregon Inlet northward 48 km to Duck, North Carolina and from the nearshore zone seaward approximately 28 km (total surveyed area= 1334 km2). These data were processed and interpreted to delineate principal reflecting horizons and develop a three-dimensional seismic stratigraphic framework for the continental shelf that was compared to stratigraphic data from the shoreward back-barrier (estuarine) and barrier island system. Six principal reflecting horizons (designated R0 through R5) were present within the upper 60 m of the shelf stratigraphic succession. Three-dimensional mapping of reflector R1 demonstrated its origin from fluvial incision of the continental shelf during an episode (or episodes) of lowered sea-level. Fluvial processes during development of reflector R1 were responsible for extensive reworking and re-deposition of sediment throughout most of the northern half of the study area. Five seismic stratigraphic units (designated S1 through S5) were tentatively correlated with depositional sequences previously identified from the North Carolina back-barrier (estuarine) and barrier island system. These five stratigraphic units span the Quaternary Period (S1 = early Holocene; S2 = 51-78 ka; S3 = 330-530 ka; S4 = 1.1-1.8 Ma; S5 = earliest Pleistocene). Unit S1 is composed of fine-grained fluvial/estuarine sediment that back-filled incised streams during early Holocene sea-level rise. The four other stratigraphic units (S2-S5) display tabular depositional geometries, low total relief, and thicken toward the east-southeast as their basal reflectors dip gently between 0.41 m km-1 (0.02??) and 0.54 m km-1 (0.03??). Knowledge of the three-dimensional subsurface stratigraphic architecture of the continental shelf enhances understanding of the development of shelf depositional successions and provides a framework for development of better Quaternary sea-level data, especially offshore North Carolina where such data are sparse. ?? 2002 Elsevier Science B.V. All rights reserved.
Publication type Article
Publication Subtype Journal Article
Title Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA
Series title Marine Geology
DOI 10.1016/S0025-3227(01)00253-5
Volume 183
Issue 1-4
Year Published 2002
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Marine Geology
First page 45
Last page 65
Google Analytic Metrics Metrics page
Additional publication details