Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

By: , and 



The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1), allows for an improvement in oxygen absorption efficiency by maintaining DN well below local saturation concentrations (2), minimizes building energy requirements related to heating and ventilation and (3), reduces the potential for pathogen transmittance. We report on the performance of a test scrubber evaluated over a range of NaOH solution temperatures, pH, packing irrigation rates, and gas stream compositions. We also describe our experience with the process in a pilot scale recirculating water (trout) production system.
Publication type Conference Paper
Publication Subtype Conference Paper
Title Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide
DOI 10.1016/j.aquaeng.2004.03.010
Volume 32
Issue 1
Year Published 2004
Language English
Larger Work Title Aquacultural Engineering
First page 183
Last page 208
Google Analytics Metrics Metrics page
Additional publication details