Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

Earthquake Spectra
By: , and 



The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.
Publication type Article
Publication Subtype Journal Article
Title Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake
Series title Earthquake Spectra
DOI 10.1193/1.1778389
Volume 20
Issue 3
Year Published 2004
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Earthquake Spectra
First page 639
Last page 667
Google Analytic Metrics Metrics page
Additional publication details