Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA

Ecotoxicology
By: , and 

Links

Abstract

The physical factors controlling total mercury (HgT) and methylmercury (MeHg) concentrations in lakes and streams of northeastern USA were assessed in a regional data set containing 693 HgT and 385 corresponding MeHg concentrations in surface waters. Multiple regression models using watershed characteristics and climatic variables explained 38% or less of the variance in HgT and MeHg. Land cover percentages and soil permeability generally provided modest predictive power. Percent wetlands alone explained 19% of the variance in MeHg in streams at low-flow, and it was the only significant (p < 0.02) predictor for MeHg in lakes, albeit explaining only 7% of the variance. When stream discharge was added as a variable it became the dominant predictor for HgT in streams, improving the model r 2 from 0.19 to 0.38. Stream discharge improved the MeHg model more modestly, from r 2 of 0.25 to 0.33. Methylation efficiency (MeHg/HgT) was modeled well (r 2 of 0.78) when a seasonal term was incorporated (sine wave with annual period). Physical models explained 18% of the variance in fish Hg concentrations in 134 lakes and 55% in 20 reservoirs. Our results highlight the important role of seasonality and short-term hydrologic changes to the delivery of Hg to water bodies. ?? 2005 Springer Science+Business Media, Inc.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA
Series title Ecotoxicology
DOI 10.1007/s10646-004-6264-z
Volume 14
Issue 1-2
Year Published 2005
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Ecotoxicology
First page 125
Last page 134