Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

Applied Geochemistry
By:  and 



The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the <2mm-size fraction of surface composite slag material or crushed slag from at depth in piles 1 and 2 are mineralogically similar to the large surface slag fragments from those piles with the addition of phases such as feldspars, Fe oxides, and clay minerals that are either secondary weathering products or entrained from the underlying bedrock. Pile 3 slag contains mostly skeletal forsteritic olivine and Ti-bearing aluminian diopside, dendritic or fine-grained subhedral melilite, glass, euhedral spinel, metallic Fe, alabandite-oldhamite solid solution, as well as a sparse Ti carbonitride phase. The bulk chemistry of the slag is dominated by Al 2O 3 (8.5-16.2wt.%), CaO (8.2-26.2wt.%), MgO (4.2-24.7wt.%), and SiO 2 (36.4-59.8wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe 2O 3, K 2O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al 2O 3, CaO and S, and low in Fe 2O 3, K 2O and SiO 2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct - a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of blast (cold versus hot), which affects the furnace temperature, and other beneficiation methods.The three distinct slag piles at Hopewell are enriched in numerous trace elements, such as As (up to 12. mg/kg), Cd (up to 0.4. mg/kg), Co (up to 31.8. mg/kg), Cu (up to 647. mg/kg), Mn (up to 0.69. wt.%), Pb (up to 172. mg/kg) and Zn (up to 393. mg/kg), together with Fe (13.9. wt.%), when compared to the average for the continental crust, with the <2. mm-size fraction commonly containing the highest concentrations. Enrichments in various elements (e.g., Cd, Co, Cu, Pb, Zn) were also found in the ore samples. Despite these enrichments, comparison of bulk chemistry trace-element concentrations to the environmental guidelines suggests most elements are likely not problematic with the exception of As, Co, Fe and Mn. Leachate tests that simulate weathering indicate Fe (up to 973??g/L) and Mn (up to 133??g/L) are readily released in potentially harmful concentrations compared to secondary drinking water and some aquatic ecosystem toxicity criteria. Aluminum and Cu, although not high in the solid compared to environmental guidelines, also exceed relevant criteria in leachate extracts with maximum concentrations of 2700??g/L and 17.7??g/L, respectively. In contrast, As and Co, which are significant in the solids, are not leached in concentrations that exceed guidelines (i.e., 3??g/L or less for both elements). The weathering rates of the Fe metal and Fe oxides, which host Cu and some Fe, are likely higher than the silicate glass, which hosts the majority of Al, Mn and so

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA
Series title Applied Geochemistry
DOI 10.1016/j.apgeochem.2011.12.011
Volume 27
Issue 3
Year Published 2012
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Applied Geochemistry
First page 623
Last page 643