Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific)

Earth and Planetary Science Letters
By:  and 

Links

Abstract

Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155ppm sulfur and are more oxidized, have high SO4/ΣS ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative δ34Ssulfide-S values (down to -30 °) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940ppm S, and with δ34S shifted to -6.0‰) from the mantle value (0 ‰). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 X1010molSyr-1, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 X 10-8molcm-2yr-1 over 15m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 X 1011moly-1, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.
Publication type Article
Publication Subtype Journal Article
Title Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific)
Series title Earth and Planetary Science Letters
DOI 10.1016/j.epsl.2011.07.027
Volume 310
Issue 1-2
Year Published 2011
Language English
Publisher Elsevier
Contributing office(s) Central Mineral and Environmental Resources Science Center
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Earth and Planetary Science Letters
First page 73
Last page 83
Google Analytic Metrics Metrics page
Additional publication details