On the composition of earth's short-period seismic noise field

Bulletin of the Seismological Society of America
By: , and 

Links

Abstract

In the classic microseismic band of 5-20 sec, seismic noise consists mainly of fundamental mode Rayleigh and Love waves; however, at shorter periods seismic noise also contains a significant amount of body-wave energy and higher mode surface waves. In this study we perform a global survey of Earth's short-period seismic noise field with the goal of quantifying the relative contributions of these propagation modes. We examined a year's worth of vertical component data from 18 seismic arrays of the International Monitoring System that were sited in a variety of geologic environments. The apertures of the arrays varied from 2 to 28 km, constraining the periods we analyzed to 0.25-2.5 sec. Using frequency-wavenumber analysis we identified the apparent velocity for each sample of noise and classified its mode of propagation. The dominant component was found to be Lg, occurring in about 50% of the noise windows. Because Lg does not propagate across ocean-continent boundaries, this energy is most likely created in shallow water areas near coastlines. The next most common component was P-wave energy, which accounted for about 28% of the noise windows. These were split between regional P waves (Pn=Pg at 6%), mantle bottoming P waves (14%), and core-sensitive waves (PKP at 8%). This energy is mostly generated in deep water away from coastlines, with a region of the North Pacific centered at 165?? W and 40?? N being especially prolific. The remainder of the energy arriving in the noise consisted of Rg waves (28%), a large fraction of which may have a cultural origin. Hence, in contrast to the classic micro-seismic band of 5-20 sec, at shorter periods fundamental mode Rayleigh waves are the least significant component.
Publication type Article
Publication Subtype Journal Article
Title On the composition of earth's short-period seismic noise field
Series title Bulletin of the Seismological Society of America
DOI 10.1785/0120090120
Volume 100
Issue 2
Year Published 2010
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Bulletin of the Seismological Society of America
First page 606
Last page 617
Google Analytic Metrics Metrics page
Additional publication details