Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon

Geochimica et Cosmochimica Acta
By: , and 



Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.

Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8–14.8‰ with corresponding matrix glass values of 2.4–13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8–5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4–5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23–1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon
Series title Geochimica et Cosmochimica Acta
DOI 10.1016/j.gca.2009.01.019
Volume 73
Issue 10
Year Published 2009
Language English
Publisher American Geophysical Union
Contributing office(s) Volcano Hazards Program, Volcano Science Center
Description 35 p.
First page 2978
Last page 3012
Country United States
State Oregon
Other Geospatial Crater Lake, Mt. Mazama
Google Analytic Metrics Metrics page