Predicting 21st-century polar bear habitat distribution from global climate models

Ecological Monographs
By: , and 

Links

Abstract

Projections of polar bear (Ursus maritimus) sea ice habitat distribution in the polar basin during the 21st century were developed to understand the consequences of anticipated sea ice reductions on polar bear populations. We used location data from satellitecollared polar bears and environmental data (e.g., bathymetry, distance to coastlines, and sea ice) collected from 1985 to 1995 to build resource selection functions (RSFs). RSFs described habitats that polar bears preferred in summer, autumn, winter, and spring. When applied to independent data from 1996 to 2006, the RSFs consistently identified habitats most frequently used by polar bears. We applied the RSFs to monthly maps of 21st-century sea ice concentration projected by 10 general circulation models (GCMs) used in the Intergovernmental Panel of Climate Change Fourth Assessment Report, under the A1B greenhouse gas forcing scenario. Despite variation in their projections, all GCMs indicated habitat losses in the polar basin during the 21st century. Losses in the highest-valued RSF habitat (optimal habitat) were greatest in the southern seas of the polar basin, especially the Chukchi and Barents seas, and least along the Arctic Ocean shores of Banks Island to northern Greenland. Mean loss of optimal polar bear habitat was greatest during summer; from an observed 1.0 million km2 in 1985-1995 (baseline) to a projected multi-model mean of 0.32 million km2 in 2090-2099 (-68% change). Projected winter losses of polar bear habitat were less: from 1.7 million km2 in 1985-1995 to 1.4 million km2 in 2090-2099 (-17% change). Habitat losses based on GCM multi-model means may be conservative; simulated rates of habitat loss during 1985-2006 from many GCMs were less than the actual observed rates of loss. Although a reduction in the total amount of optimal habitat will likely reduce polar bear populations, exact relationships between habitat losses and population demographics remain unknown. Density and energetic effects may become important as polar bears make long-distance annual migrations from traditional winter ranges to remnant high-latitude summer sea ice. These impacts will likely affect specific sex and age groups differently and may ultimately preclude bears from seasonally returning to their traditional ranges.
Publication type Article
Publication Subtype Journal Article
Title Predicting 21st-century polar bear habitat distribution from global climate models
Series title Ecological Monographs
DOI 10.1890/07-2089.1
Volume 79
Issue 1
Year Published 2009
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Ecological Monographs
First page 25
Last page 58
Google Analytic Metrics Metrics page
Additional publication details