Process-based modeling of tsunami inundation and sediment transport

Journal of Geophysical Research F: Earth Surface
By: , and 

Links

Abstract

The infrequent and unpredictable nature of tsunamis precludes the use of field experiments to measure the hydrodynamic and sediment transport processes that occur. Instead, these processes are often approximated from laboratory, numerical, and theoretical studies or inferred from observations of the resultant sediment deposits. Here Delft3D, a three-dimensional numerical model, is used to simulate the inundation and sediment transport of a tsunami similar in magnitude to the 26 December 2004 Indian Ocean tsunami over one measured and three idealized morphologies. The model is first shown to match well the observations taken at Kuala Meurisi, Sumatra, and then used to examine in detail the processes that occur during the tsunami. The model predicts that at a given cross-shore location the onshore flow accelerates rapidly to a maximum as the wavefront passes, and then gradually decelerates before reversing direction and flowing offshore. The onshore flow does not tend to zero everywhere at maximum inundation, but instead flow reversal occurs near the shoreline even as the wavefront continues to inundate landward. While some sediment is eroded by the passing wavefront, the suspension of sandy sediment is dominated by the long-duration, high-velocity backwash that occurs along the beach face and offshore of the shoreline. Some of the sediment suspended during backwash is advected shoreward by the subsequent wave, creating large spatial gradients in the suspended sediment concentrations, which may not be in equilibrium with the local hydrodynamics. The inundation and transport of sediment during a tsunami can be affected by complexities in the morphological profile and interactions between multiple waves, and many of the hydrodynamic and sediment transport processes predicted here are similar to analogous processes previously observed in the swash zone. Copyright 2011 by the American Geophysical Union.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Process-based modeling of tsunami inundation and sediment transport
Series title Journal of Geophysical Research F: Earth Surface
DOI 10.1029/2010JF001797
Volume 116
Issue 1
Year Published 2011
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Geophysical Research F: Earth Surface