Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream

Environmental Management
By: , and 

Links

Abstract

The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola–Chattahoochee–Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940–1969) and current (1980–2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the dynamics of the system, highlighting the need for further study of mussel population dynamics.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream
Series title Environmental Management
DOI 10.1007/s00267-011-9688-2
Volume 48
Issue 1
Year Published 2011
Language English
Publisher Springer Link
Description 14 p.
First page 109
Last page 122
Country United States
State Georgia
Other Geospatial Sawhatchee Creek
Google Analytic Metrics Metrics page
Additional publication details