Geomorphology, stability and mobility of the Currituck slide

Marine Geology
By: , and 

Links

Abstract

Over the last 100,000??years, the U.S. Atlantic continental margin has experienced various types of mass movements some of which are believed to have taken place at times of low sea level. At one of these times of low sea level a significant trigger caused a major submarine mass movement off the coast of Virginia: the Currituck slide which is believed to have taken place between 24 and 50??ka ago. This slide removed a total volume of about 165??km3 from this section of the continental slope. The departure zone still shows a very clean surface that dips at 4?? and is only covered by a thin veneer of postglacial sediment. Multibeam bathymetric and seismic survey data suggest that this slide took place along three failures surfaces. The morphology of the source area suggests that the sediments were already at least normally consolidated at the time of failure. The slide debris covers an area as much as 55??km wide that extends 180??km from the estimated toe of the original slope. The back analysis of slide initiation indicates that very high pore pressure, a strong earthquake, or both had to be generated to trigger slides on such a low failure plane angle. The shape of the failure plane, the fact that the surface is almost clear of any debris, and the mobility analysis, all support the argument that the slides took place nearly simultaneously. Potential causes for the generation of high pore pressures could be seepage forces from coastal aquifers, delta construction and related pore pressure generation due to the local sediment loading, gas hydrates, and earthquakes. This slide, and its origin, is a spectacular example of the potential threat that submarine mass movements can pose to the US Atlantic coast and underline the need to further assess the potential for the generation of such large slides, like the Grand Banks 1927 landslide of similar volume. ?? 2008 Elsevier B.V.
Publication type Article
Publication Subtype Journal Article
Title Geomorphology, stability and mobility of the Currituck slide
Series title Marine Geology
DOI 10.1016/j.margeo.2008.12.005
Volume 264
Issue 1-2
Year Published 2009
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Marine Geology
First page 28
Last page 40
Google Analytic Metrics Metrics page
Additional publication details