Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

Applied Geochemistry
By: , and 

Links

Abstract

Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO3- source concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 μg kg−1 a−1 suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H+-amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater
Series title Applied Geochemistry
DOI 10.1016/j.apgeochem.2011.05.023
Volume 26
Issue 8
Year Published 2011
Language English
Publisher Elsevier
Publisher location Amsterdam, Netherlands
Contributing office(s) Crustal Geophysics and Geochemistry Science Center
Description 14 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Applied Geochemistry
First page 1488
Last page 1501
Country United States
State California
Other Geospatial Sacramento Valley