New aerial survey and hierarchical model to estimate manatee abundance

Journal of Wildlife Management
By: , and 



Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1-2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability of detection of individual manatees within a group also differed among surveys, ranging from a low of 0.27 on 11 January to a high of 0.73 on 8 August. During winter surveys, abundance was always higher inland at Port of the Islands (POI), a manatee warm-water aggregation site, than in the other habitat types. During warm-season surveys, highest abundances were estimated in offshore habitat where manatees forage on seagrass. Manatees continued to use POI in summer, but in lower numbers than in winter, possibly to drink freshwater. Abundance in other inland systems and inshore bays was low compared to POI in winter and summer, possibly because of low availability of freshwater. During cold weather, maps of patch abundance of paired surveys showed daily changes in manatee distribution associated with rapid changes in air and water temperature as manatees sought warm water with falling temperatures and seagrass areas with increasing temperatures. Within a habitat type, some patches had higher manatee abundance suggesting differences in quality, possibly due to freshwater flow. If hydrological restoration alters the location of quality habitat, postrestoration comparisons using our methods will document how manatees adjust to new resources, providing managers with information on spatial needs for further monitoring or management. Total abundance for the entire area was similar among survey dates. Credible intervals however were large on a few surveys, and may limit our ability to statistically detect trends in total abundance. Additional modeling of abundance with time- and patch-specific covariates of salinity, water temperature, and seagrass abundance will directly link manatee abundance with physical and biological changes due to restoration and should decrease uncertainty of estimates. ?? 2011 The Wildlife Society.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title New aerial survey and hierarchical model to estimate manatee abundance
Series title Journal of Wildlife Management
DOI 10.1002/jwmg.41
Volume 75
Issue 2
Year Published 2011
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Wildlife Management
First page 399
Last page 412
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table