A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries

Journal of Geophysical Research B: Solid Earth
By: , and 

Links

Abstract

The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.
Publication type Article
Publication Subtype Journal Article
Title A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries
Series title Journal of Geophysical Research B: Solid Earth
DOI 10.1029/2008JB005950
Volume 114
Issue 7
Year Published 2009
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Geophysical Research B: Solid Earth
Google Analytic Metrics Metrics page
Additional publication details