Leonard F. Konikow
2011
Modeling subsurface solute transport is difﬁcult—more so than modeling heads and ﬂows. The classical governing equation does not always adequately represent what we see at the ﬁeld scale. In such cases, commonly used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works well for all conditions, and for any given complex ﬁeld problem, where seepage velocity is highly variable, no one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the governing groundwater-ﬂow equation, errors in concentrations from numerical dispersion and/or oscillations may be large in some cases. The accuracy and efﬁciency of the numerical solution to the solute-transport equation are more sensitive to the numerical method chosen than for typical groundwater-ﬂow problems. However, numerical errors can be kept within acceptable limits if sufﬁcient computational effort is expended. But impractically long
simulation times may promote a tendency to ignore or accept numerical errors. One approach to effective solutetransport modeling is to keep the model relatively simple and use it to test and improve conceptual understanding of the system and the problem at hand. It should not be expected that all concentrations observed in the ﬁeld can be reproduced. Given a knowledgeable analyst, a reasonable description of a hydrogeologic framework, and the
availability of solute-concentration data, the secret to successful solute-transport modeling may simply be to lower expectations.
application/pdf
10.1111/j.1745-6584.2010.00764.x
en
Wiley
The secret to successful solute-transport modeling
article