Space use and habitat selection of migrant and resident American Avocets in San Francisco Bay

By: , and 



San Francisco Bay is a wintering area for shorebirds, including American Avocets (Recurvirostra americana). Recently, a new resident population of avocets has emerged, presumably because of the development of tidal marshes into salt-evaporation ponds. In habitat restoration now underway, as many as 90% of salt ponds will be restored to tidal marsh. However, it is unknown if wintering and resident avocets coexist and if their requirements for space and habitat differ, necessitating different management for their populations to be maintained during restoration. We captured and radio-marked wintering avocets at a salt pond and a tidal flat to determine their population status (migrant or resident) and examine their space use and habitat selection. Of the radio-marked avocets, 79% were migrants and 21% were residents. At the salt pond, residents' fidelity to their location of capture was higher, and residents moved less than did migrants from the same site. Conversely, on the tidal flat, fidelity of residents to their site of capture was lower, and residents' home ranges were larger than those of migrants from the same site. Habitat selection of migrants and residents differed little; however, capture site influenced habitat selection far more than the birds' status as migrants or residents. Our study suggests that individual avocets have high site fidelity while wintering in San Francisco Bay, although the avocet as a species is plastic in its space use and habitat selection. This plasticity may allow wintering migrant and resident avocets to adapt to habitat change in San Francisco Bay. ?? The Cooper Ornithological Society 2010.
Publication type Article
Publication Subtype Journal Article
Title Space use and habitat selection of migrant and resident American Avocets in San Francisco Bay
Series title Condor
DOI 10.1525/cond.2010.090060
Volume 112
Issue 3
Year Published 2010
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Condor
First page 511
Last page 520
Google Analytic Metrics Metrics page
Additional publication details