Debris flows resulting from glacial-lake outburst floods in tibet, China

Physical Geography
By: , and 



During the last 70 years of general climatic amelioration, 18 glacial-lake outburst floods (GLOFs) and related debris flows have occurred from 15 moraine-dammed lakes in Tibet, China. Catastrophic loss of life and property has occurred because of the following factors: the large volumes of water discharged, the steep gradients of the U-shaped channels, and the amount and texture of the downstream channel bed and bank material. The peak discharge of each GLOF exceeded 1000 m3/s. These flood discharges transformed to non-cohesive debris flows if the channels contained sufficient loose sediment for entrainment (bulking) and if their gradients were >1%. We focus on this key element, transformation, and suggest that it be included in evaluating future GLOF-related risk, the probability of transformation to debris flow and hyperconcentrated flow. The general, sequential evolution of the flows can be described as from proximal GLOFs, to sedimentladen streamflow, to hyperconcentrated flow, to non-cohesive debris flow (viscous or cohesive debris flow only if sufficient fine sediment is present), and then, distally, back to hyperconcentrated flow and sediment-laden streamflow as sediment is progressively deposited. Most of the Tibet examples transformed only to non-cohesive debris flows. The important lesson for future hazard assessment and mitigation planning is that, as a GLOF entrains (bulks) enough sediment to become a debris flow, the flow volume must increase by at least three times (the "bulking factor"). In fact, the transforming flow waves overrun and mix with downstream streamflow, in addition to adding the entrained sediment (and thus enabling addition of yet more sediment and a bulking factor in excess of three times). To effectively reduce the risk of GLOF debris flows, reducing the level of a potentially dangerous lake with a siphon or excavated spillway or installing gabions in combination with a downstream debris dam are the primary approaches.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Debris flows resulting from glacial-lake outburst floods in tibet, China
Series title Physical Geography
DOI 10.2747/0272-3646.31.6.508
Volume 31
Issue 6
Year Published 2010
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Physical Geography
First page 508
Last page 527
Google Analytic Metrics Metrics page