Ecoregions and stream morphology in eastern Oklahoma

Geomorphology
By: , and 

Links

Abstract

Broad-scale variables (i.e., geology, topography, climate, land use, vegetation, and soils) influence channel morphology. How and to what extent the longitudinal pattern of channel morphology is influenced by broad-scale variables is important to fluvial geomorphologists and stream ecologists. In the last couple of decades, there has been an increase in the amount of interdisciplinary research between fluvial geomorphologists and stream ecologists. In a historical context, fluvial geomorphologists are more apt to use physiographic regions to distinguish broad-scale variables, while stream ecologists are more apt to use the concept of an ecosystem to address the broad-scale variables that influence stream habitat. For this reason, we designed a study using ecoregions, which uses physical and biological variables to understand how landscapes influence channel processes. Ecoregions are delineated by similarities in geology, climate, soils, land use, and potential natural vegetation. In the fluvial system, stream form and function are dictated by processes observed throughout the fluvial hierarchy. Recognizing that stream form and function should differ by ecoregion, a study was designed to evaluate how the characteristics of stream channels differed longitudinally among three ecoregions in eastern Oklahoma, USA: Boston Mountains, Ozark Highlands, and Ouachita Mountains. Channel morphology of 149 stream reaches was surveyed in 1st- through 4th-order streams, and effects of drainage area and ecoregion on channel morphology was evaluated using multiple regressions. Differences existed (?????0.05) among ecoregions for particle size, bankfull width, and width/depth ratio. No differences existed among ecoregions for gradient or sinuosity. Particle size was smallest in the Ozark Highlands and largest in the Ouachita Mountains. Bankfull width was larger in the Ozark Highlands than in the Boston Mountains and Ouachita Mountains in larger streams. Width/depth ratios of the Boston Mountains and Ozark Highlands were not statistically different. Significant differences existed, however, between the Boston Mountains and Ozark Highlands when compared individually to the Ouachita Mountains. We found that ecoregions afforded a good spatial structure that can help in understanding longitudinal trends in stream reach morphology surveyed at the reach scale. The hierarchy of the fluvial system begins within a broad, relatively homogenous setting that imparts control on processes that affect stream function. Ecoregions provide an adequate regional division to begin a large-scale geomorphic study of processes in stream channels. ?? 2010 Elsevier B.V.
Publication type Article
Publication Subtype Journal Article
Title Ecoregions and stream morphology in eastern Oklahoma
Series title Geomorphology
DOI 10.1016/j.geomorph.2010.06.004
Volume 122
Issue 1-2
Year Published 2010
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Geomorphology
First page 117
Last page 128
Google Analytic Metrics Metrics page
Additional publication details