Evaluation of a new model of aeolian transport in the presence of vegetation

Journal of Geophysical Research F: Earth Surface
By: , and 



Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length commonly associated with vegetated surfaces, highlighting the variation of threshold shear velocity with space and time in real landscapes.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Evaluation of a new model of aeolian transport in the presence of vegetation
Series title Journal of Geophysical Research F: Earth Surface
DOI 10.1002/jgrf.20040
Volume 118
Issue 1
Year Published 2013
Language English
Publisher AGU
Contributing office(s) Southwest Biological Science Center
Description 9 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Geophysical Research F: Earth Surface
First page 288
Last page 306
Google Analytic Metrics Metrics page