Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

Economic Geology
By: , and 

Links

Abstract

Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit types that form in deeper environments and could be related to metamorphic processes or magmatic processes, although the isotopic evidence for magmatic components is relatively weak.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt
Series title Economic Geology
DOI 10.2113/econgeo.107.6.1207
Volume 107
Issue 6
Year Published 2012
Language English
Publisher Society of Economic Geologists
Contributing office(s) Denver Federal Center, Eastern Mineral and Environmental Resources Science Center
Description 15 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Economic Geology
First page 1207
Last page 1221
Country United States
State Idaho
Other Geospatial Idaho Cobalt Belt
Google Analytic Metrics Metrics page
Additional publication details