Holocene and latest Pleistocene paleoseismology of the Salt Lake City segment of the Wasatch Fault Zone, Utah, at the Penrose Drive Trench Site

By: , and 

Links

Abstract

The Salt Lake City segment (SLCS) of the Wasatch fault zone (WFZ) and the West Valley fault zone (WVFZ) compromise Holocene-active normal faults that bound a large intrabasin graben in northern Salt Lake Valley and have evidence of recurrent, large-magnitude (M ~6-7) surface-faulting earthquakes. However, at the time of this investigation, questions remained regarding the timing, displacement, and recurrence of latest Pleistocene and Holocene earthquakes on the northern SLCS and WVFZ , and whether the WVFZ is seismically independent of, or moves coseismically with, the SLCS.


To improve paleoseismic data for the SLCS, we conducted a fault-trench investigation at the Penrose Drive site on the northern SLCS. Two trenches, excavated across an 11-m-high scarp near the northern end of the East Bench fault, exposed colluvial-wedge evidence for fize of six (preferred) surface-faulting earthquakes postdating to Provo-phase shoreline of Lake Bonneville (~14-18 ka). Radiocarbon and luminescence ages support earthquake times at 4.0 ± 0.5 ka (2σ) (PD1), 5.9 ± 0.7 ka (PD2), 7.5 ± 0.8 ka (PD3a), 9.7 ± 1.1 ka (PD3b), 10.9 ± 0.2 ka (PD4), and 12.1 ± 1.6 ka (PD5). At least one additional earthquake occurred at 16.5 ± 1.9 ka (PD6) based on an erosional unconformity that separates deformed Lake Bonneville sily and flat-lying Provo-phase shoreline gravel. Earthquakes PD5-PD1 yield latest Pleistocene (post-Provo) and Holocene mean recurrence intervals of ~1.6 kyr and ~1.7-1.9 kyr, respectively. Using 1.0-1.4 m of per-event vertical displacement for PD5-PD3b corroborate previously identified SLCS earthquakes at 4-10 ka. PD4 and PD5 occurred within an ~8-kyr *17-9 ka) time interval on the SLCS previously interpreted as a period of seismic quiescence, and PD6 possibly corresponds with a previously identified earthquake at ~17 ka (although both events have large timing uncertainties).


The Penrose data, when combined with previous paleoseismic results, improve the latest Pleistocene-Holocene earthquake chronology of the SLCS, and demonstrate that the SLCS has been a consistently active source of large-magnitude earthquakes since the latest Pleistocene. At least nine surface-faulting earthquakes (S1-S9) have occurred since the highstand of Lake Bonneville (~18 ka). Where the SLCS earthquake record is most complete (since ~14 ka), per-site estimates of mean recurrence are similar for the latest Pleistocene (post-Provo) (~1.6 kyr), Holocene (~1.6-1.9 kyr), and late Holocene (~1.2-1.4 kyr). These SLCS paleoearthquake data indicate an essentially stable rate of earthquake recurrence since the latest Pleistocene and are important for understanding the earthquake potential of the SLCS, clarifying the seismogenic relation between the SLCS and WVFZ, and forecasting the probabilities of future large-magnitude earthquake in the Wasatch Front region.

Publication type Report
Publication Subtype State or Local Government Series
Title Holocene and latest Pleistocene paleoseismology of the Salt Lake City segment of the Wasatch Fault Zone, Utah, at the Penrose Drive Trench Site
Series number 149
Volume 24
Year Published 2014
Language English
Publisher Utah Geological Survey
Publisher location Salt Lake City, UT
Contributing office(s) Geologic Hazards Science Center
Description 39 p.
Larger Work Type Report
Larger Work Subtype State or Local Government Series
Larger Work Title Evaluating surface faulting chronologies of Graben-Bounding Faults in Salt Lake Valley, Utah: new paleoseismic data from the Salt Lake City segment of the Wasatch Fault Zone and the West Valley Fault Zone
Country United States
State Utah
Other Geospatial Wasatch Fault Zone
Google Analytic Metrics Metrics page
Additional publication details