Strong species-environment feedback shapes plant community assembly along environmental gradients

Ecology and Evolution
By:  and 



An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.
Publication type Article
Publication Subtype Journal Article
Title Strong species-environment feedback shapes plant community assembly along environmental gradients
Series title Ecology and Evolution
DOI 10.1002/ece3.784
Volume 3
Issue 12
Year Published 2013
Language English
Publisher Wiley
Contributing office(s) Southeast Ecological Science Center
Description 10 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Ecology and Evolution
First page 4119
Last page 4128
Google Analytic Metrics Metrics page
Additional publication details