Initial soil respiration response to biomass harvesting and green-tree retention in aspen-dominated forests of the Great Lakes region

Forest Ecology and Management
By: , and 



Contemporary forest management practices are increasingly designed to optimize novel objectives, such as maximizing biomass feedstocks and/or maintaining ecological legacies, but many uncertainties exist regarding how these practices influence forest carbon (C) cycling. We examined the responses of soil respiration (Rs) to biomass harvesting and green-tree retention in an effort to empirically assess their impacts on C cycling. We measured Rs and soil microclimatic variables over four growing seasons following implementation of these management practices using a fully replicated, operational-scale experiment in aspen-dominated forests in northern Minnesota. Treatments included three levels of biomass removal within harvested areas: whole-tree harvest (no slash deliberately retained), 20% slash retained, and stem-only harvest (all slash retained), and two levels of green-tree retention: 0.1 ha aggregate or none. The relative amount of biomass removed had a negligible effect on Rs in harvested areas, but treatment effects were probably obscured by heterogeneous slash configurations and rapid post-harvest regeneration of aspen in all of the treatments. Discrete measurements of Rs and soil temperature within green-tree aggregates were not discernible from surrounding harvested areas or unharvested control stands until the fourth year following harvest, when Rs was higher in unharvested controls than in aggregates and harvested stands. Growing season estimates of Rs showed that unharvested control stands had higher Rs than both harvested stands and aggregates in the first and third years following harvest. Our results suggest that retention of larger forest aggregates may be necessary to maintain ecosystem-level responses similar to those in unharvested stands. Moreover, they highlight the innate complexity of operational-scale research and suggest that the initial impacts of biomass harvest on Rs may be indiscernible from traditional harvest in systems where incidental breakage is high.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Initial soil respiration response to biomass harvesting and green-tree retention in aspen-dominated forests of the Great Lakes region
Series title Forest Ecology and Management
DOI 10.1016/j.foreco.2014.05.052
Volume 328
Year Published 2014
Language English
Publisher Elsevier
Contributing office(s) Southwest Biological Science Center
Description 11 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Forest Ecology and Management
First page 342
Last page 352
Country United States
Other Geospatial Great Lakes
Google Analytic Metrics Metrics page
Additional publication details