Analysis of projected water availability with current basin management plan, Pajaro Valley, California

Journal of Hydrology: Regional Studies
By: , and 

Links

Abstract

The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori.

The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000–2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery of groundwater levels in the coastal regions served by the CDS. If economically feasible, water from summer agricultural runoff and tile-drain returnflows could be another potential local source of water that, if captured and reused, could offset the imbalance between supply and demand as well as reducing discharge of agricultural runoff into the National Marine Sanctuary of Monterey Bay. A BMP update (2012) identifies projects and programs that will fund a conservation program and will provide additional, alternative water sources to reduce or replace coastal and inland pumpage, and to replenish the aquifers with managed aquifer recharge in an inland portion of the Pajaro Valley.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Analysis of projected water availability with current basin management plan, Pajaro Valley, California
Series title Journal of Hydrology: Regional Studies
DOI 10.1016/j.jhydrol.2014.07.005
Volume 519
Issue A
Year Published 2014
Language English
Publisher Elsevier
Contributing office(s) California Water Science Center
Description 17 p.
First page 131
Last page 147
Country United States
State California
Other Geospatial Pajaro Valley
Online Only (Y/N) N
Additional Online Files (Y/N) N