Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA

Forest Ecology and Management
Arkansas Game and Fish-Commission; Louisiana Department of Wildlife and Fisheries, U.S. Fish and Wildlife Service; U.S. Geological Survey Louisiana Fish and Wildlife Cooperative Research Unit
By: , and 



Flooding is a defining disturbance in floodplain forests affecting seed germination, seedling establishment, and tree growth. Globally, flood control, including artificial levees, dams, and channelization has altered flood regimes in floodplains. However, a paucity of data are available in regards to the long-term effects of levees on stand establishment and tree growth in floodplain forests. In this study, we used dendrochronological techniques to reconstruct tree recruitment and tree growth over a 90-year period at three stands within a ring levee in the Mississippi River Alluvial Valley (MAV) and to evaluate whether recruitment patterns and tree growth changed following levee construction. We hypothesized that: (1) sugarberry is increasing in dominance and overcup oak (Quercus lyrata) is becoming less dominant since the levee, and that changes in hydrology are playing a greater role than canopy disturbance in these changes in species dominance; and (2) that overcup oak growth has declined following construction of the levee and cessation of overbank flooding whereas that of sugarberry has increased. Recruitment patterns shifted from flood-tolerant overcup oak to flood-intolerant sugarberry (Celtis laevigata) after levee construction. None of the 122 sugarberry trees cored in this study established prior to the levee, but it was the most common species established after the levee. The mechanisms behind the compositional change are unknown, however, the cosmopolitan distribution of overcup oak during the pre-levee period and sugarberry during the post-levee period, the lack of sugarberry establishment in the pre-levee period, and the confinement of overcup oak regeneration to the lowest areas in each stand after harvest in the post-levee period indicate that species-specific responses to flooding and light availability are forcing recruitment patterns. Overcup oak growth was also affected by levee construction, but in contrast to our hypothesis, growth actually increased for several decades before declining during a drought in the late 1990s. We interpret this result as removal of flood stress following levee construction. This finding emphasizes the fact that flooding can be stressful to trees regardless of their flood tolerance and that growth in floodplain trees can be sustained provided adequate soil moisture is present, regardless of the source of soil moisture. However, future research efforts should focus on the long-term effect of hydrologic modification on stand development and on how hydrologic modifications, such as elimination of surface flooding and groundwater declines, affect the vulnerability of floodplain forests to drought.

Publication type Article
Publication Subtype Journal Article
Title Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA
Series title Forest Ecology and Management
DOI 10.1016/j.foreco.2014.08.024
Volume 334
Year Published 2014
Language English
Publisher Elsevier Science
Publisher location Amsterdam
Contributing office(s) Coop Res Unit Atlanta
Description 11 p.
First page 85
Last page 95
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details