Establishing endangered species recovery criteria using predictive simulation modeling

Biological Conservation
By: , and 



Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S. Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions for removing a species from ESA protections, need to be closely related to extinction risk. Extinction probability is a population parameter estimated with a model that uses current demographic information to project the population into the future over a number of replicates, calculating the proportion of replicated populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains and estimated the relationship between extinction probability and various demographic parameters. We tested the fit of regression models linking initial abundance, productivity, or population growth rate to extinction risk, and then, using the regression parameter estimates, determined the conditions required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression models with mean population growth rate and the natural log of initial abundance were the best predictors of extinction probability 50 years into the future. For example, based on our regression models, an initial abundance of approximately 2400 females with an expected mean population growth rate of 1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides a straightforward way of developing specific and measurable recovery criteria linked directly to the core issue of extinction risk. Published by Elsevier Ltd.

Publication type Article
Publication Subtype Journal Article
Title Establishing endangered species recovery criteria using predictive simulation modeling
Series title Biological Conservation
DOI 10.1016/j.biocon.2014.06.018
Volume 177
Year Published 2014
Language English
Publisher Elsevier
Contributing office(s) Coop Res Unit Atlanta
Description 10 p.
First page 220
Last page 229
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details