Potential nitrogen critical loads for northern Great Plains grassland vegetation

Natural Resource Report NPS/NGPN/NRR - 2015/989
By: , and 

Links

Abstract

The National Park Service is concerned that increasing atmospheric nitrogen deposition caused by fossil fuel combustion and agricultural activities could adversely affect the northern Great Plains (NGP) ecosystems in its trust. The critical load concept facilitates communication between scientists and policy makers or land managers by translating the complex effects of air pollution on ecosystems into concrete numbers that can be used to inform air quality targets. A critical load is the exposure level below which significant harmful effects on sensitive elements of the environment do not occur. A recent review of the literature suggested that the nitrogen critical load for Great Plains vegetation is 10-25 kg N/ha/yr. For comparison, current atmospheric nitrogen deposition in NGP National Park Service (NPS) units ranges from ~4 kg N/ha/yr in the west to ~13 kg N/ha/yr in the east. The suggested critical load, however, was derived from studies far outside of the NGP, and from experiments investigating nitrogen loads substantially higher than current atmospheric deposition in the region.

Therefore, to better determine the nitrogen critical load for sensitive elements in NGP parks, we conducted a four-year field experiment in three northern Great Plains vegetation types at Badlands and Wind Cave National Parks. The vegetation types were chosen because of their importance in NGP parks, their expected sensitivity to nitrogen addition, and to span a range of natural fertility. In the experiment, we added nitrogen at rates ranging from below current atmospheric deposition (2.5 kg N/ha/yr) to far above those levels but commensurate with earlier experiments (100 kg N/ha/yr). We measured the response of a variety of vegetation and soil characteristics shown to be sensitive to nitrogen addition in other studies, including plant biomass production, plant tissue nitrogen concentration, plant species richness and composition, non-native species abundance, and soil inorganic nitrogen concentration. To determine critical loads for the NGP plant communities in our experiment, we followed the NPS’s precautionary principle in assuming that it is better to be cautious than to let harm occur to the environment. Thus, the critical loads we derived are the lowest nitrogen level that any of our data suggest has a measureable effect on any of the response variables measured.

Badlands sparse vegetation, a low-productivity plant community that is an important part of the scenery at Badlands National Park and provides habitat for rare plant species, was the most sensitive of the three vegetation types. More aspects of this vegetation type responded to nitrogen addition, and at lower levels, than at the other two sites. Our data suggest that nitrogen deposition levels of 4- 6 kg N/ha/yr may increase biomass production, and consequently the amount of dead plant material on the ground in this plant community. Slightly higher critical loads are suggested for the two more productive vegetation types more characteristic of most NGP grasslands: 6-10 kg N/ha/yr for biomass production, grass tissue nitrogen concentration, or non-native species (especially annual brome grasses) cover. Highly variable results among years, as well as inconsistent responses to an increasing dose of nitrogen within sites, complicated the derivation of critical loads in this experiment, however. A less precautionary approach to deriving critical loads yielded higher values of 10-38 kg N/ha/yr.

Study Area

Publication type Report
Publication Subtype Federal Government Series
Title Potential nitrogen critical loads for northern Great Plains grassland vegetation
Series title Natural Resource Report
Series number NPS/NGPN/NRR - 2015/989
Year Published 2015
Language English
Publisher U.S. National Park Service
Publisher location Fort Collins, CO
Contributing office(s) Northern Prairie Wildlife Research Center
Description viii, 59 p.
Country United States
Other Geospatial Northern Great Plains
Google Analytic Metrics Metrics page
Additional publication details