Twenty-three years of vegetation change in a fly-ash leachate impacted meadow

By: , and 

Links

Abstract

1. Blag Slough, located in Indiana Dunes National Lakeshore, has received leachates from nearby fly-ash ponds for 13 years (1967-1980). We have monitored vegetation and sediment of Blag Slough since 1982, two years after the sealing of the fly-ash ponds and one year after the substrate was first exposed. The pH of the soil has increased one order of magnitude from 3.0 to 4.0 over the 23 years (1982-2005). If the pH further increases the solubility of many heavy metals will decrease, except for arsenic. We provide evidence that boron and zinc were bioaccumulating in the leaves of woody plants in 1984. The ratio of leaf concentration and soil concentration of aluminum suggests this element was not bioaccumulating in woody plants in 1984.

2. Soil concentrations of iron, aluminum, arsenic, and strontium were higher nearest the fly-ash ponds in 2005. The southwest corner of Blag Slough and middle position of transect X had the highest elevated levels of these metals and correlated with the occurrence of mixed spikerush association (dominated by Eleocharis olivacea).

3. Only a few exotic species occurred in the Blag Slough. Common reed (Phragmites australis) was among such species that occurred in three large clones. Other exotic species included dandelion (Taraxacum officinale), mullein (Verbascum thapsis), Jerusalem oak goosefoot (Chenopodium botrys), and sheep sorrel (Rumex acetosella). Ruderal species have occurred including thistle (Cirsium spp.), fire weed (Erechtites hieracifolium), and horseweed (Conyza canadensis). While occasional cattail (Typha) have been sampled and mapped in Blag Slough they have never persisted for very long.

4. Species richness leveled off between 1991 and 2005, except for Transect X that had a peak in 1986-7. After an extreme rainfall event in August 18, 1990, Transect V had an average water depth of 0.70 cm, W had 7.1 cm, and X had 26.90 cm. Richness in Transect X declined to a low level in 1990 and 1991 after the extreme flooding event because this transect had the deepest surface water.

5. Typical late successional vegetation associations developed since 1991 include blue joint grass (Calamagrostis canadensis) and buttonbush (Cephalanthus occidentalis), but large areas consist of disturbance-dependent mosaics of rush (Juncus effusus) and other species. The large expanses of woolly sedge (Scirpus cyperinus) that dominated in the 1980’s was replaced by rush.

6. Late-successional associations (Glyceria canadensis and Calamagrostis canadensis) were closer to the wetland edge compared to the other associations after the dewatering. This pattern occurred because wet meadow vegetation persisted at the wetland edge during the period of industrial flooding, but since then these associations expanded greatly into the north half of Blag Slough.

7. Richness, diversity, and floristic quality index (FQI) increased with time at the plot, association, association trajectories, and wetland levels; whereas mean conservatism scores (mean C), the basis of FQI calculation, decreased in time. The high C values, assigned to coastal plain disjunct species and shrubs by judgment of botanists based on their empirical xii experience including regional or state level plant conservation designations are largely responsible for the contradicted trend between FQI and C. Such contradiction highlights a problem with the subjective assignment of C values, and thus the inadequacy of application of FQI in these wetland systems.

8. Occurrence of interveinal clearing in winged sumac (Rhus copallina), late boneset (Eupatorium serotinum), and black dewberry (Rubus occidentalis) suggest a potential phytotoxicity by heavy metals. However, cause-effect relationship between the metals and the plants are yet to be investigated. Nevertheless, boron and zinc accumulation ratios in leaves of woody plants (Betula populifolia, Populus tremuloides, Rhus copallina, and Rubus sp.) in 1984 suggest that boron and zinc were bioaccumulating in those species. Known toxicity effects of aluminum suggest that plants with vein clearing may be experiencing toxic effects of aluminum despite leaf concentrations 58 to 193 ppm.

9. In a greenhouse experiment, rye (Secale cereale) and radish (Raphanus sativus) germinated poorly in the sediments from Blag Slough having high concentrations of heavy metals (ZN, Mn, B, and NH4+) compared to potting soil. However, rye and radish plants grown in Blag Slough soil had shorter shoots and roots, lower root and shoot mass, and lower root to shoot mass ratios compared to plants grown in potting soil. These results suggest some effect of the soil constituents on rye and radish growth.

10. Positive signs in the recovery of Blag Slough include the increase in soil pH, the increasing dominance of late successional grasses, and the establishment of wetland zonation relative to seasonal water depth. Some areas of Blag Slough near the fly-ash ponds that continue to have high concentrations of heavy metals continue to be devoid of vegetation or are dominated by early successional species such as green spikerush. Localized heavy metal concentrations, evidence for zinc and boron bioaccumulation in 1984, vein clearing that persists today, effects of soil on rye and racish growth, and slow succession in the southern portion of Blag Slough suggest further toxicity study is necessary to better assess the impacts on this wetland ecosystem and identify restoration actions.

Study Area

Publication type Report
Publication Subtype Federal Government Series
Title Twenty-three years of vegetation change in a fly-ash leachate impacted meadow
Year Published 2009
Language English
Publisher National Park Service
Contributing office(s) Great Lakes Science Center
Description xii, 142 p.
Country United States
State Indiana
Other Geospatial Blag Slough
Google Analytic Metrics Metrics page
Additional publication details