Membrane filtration – Fluorescent antibody staining procedure for detecting and quantifying Renibacterium salmoninarum in coelomic fluid of Chinook Salmon (Oncorhynchus tshawytscha)

Canadian Journal of Fisheries and Aquatic Sciences
By:  and 

Links

Abstract

We developed a rapid method for detecting and quantifying the pathogen Renibacterium salmoninarum in coelomic fluid of spring chinook salmon (Oncorhynchus tshawytscha) by concentrating the bacteria on 0.2-μm polycarbonate filters and staining them with specific fluorescein-labeled antibody. Centrifugation of samples and resuspension of the sedimented material in phosphate-buffered saline containing Triton X-100 increased the ease of filtration. Background fluorescence was reduced by counterstaining filters with Eriochrome black T. Postfiltration staining, rinsing, and counterstaining were done in the syringe-mounted filter holders, reducing handling of the filters and possible loss of bacteria. The number of bacteria detected by the filtration – fluorescent antibody technique in a broth culture of R. salmoninarum ranged from 6.7 × 107to7.6 × 107/mL and was slightly higher than that determined by plate count (9.6 × 106/mL). Increasing the sample dilution or decreasing the number of microscope fields examined generally increased the variability of filter counts of R. salmoninarum. Using the filtration – fluorescent antibody technique, we detected the bacterium in the coelomic fluid of 85% of spawning female spring chinook salmon sampled from a hatchery population.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Membrane filtration – Fluorescent antibody staining procedure for detecting and quantifying Renibacterium salmoninarum in coelomic fluid of Chinook Salmon (Oncorhynchus tshawytscha)
Series title Canadian Journal of Fisheries and Aquatic Sciences
DOI 10.1139/f87-027
Volume 44
Issue 1
Year Published 1987
Language English
Publisher NRC Research Press
Contributing office(s) Western Fisheries Research Center
Description 5 p.
First page 206
Last page 210