Asthenosphere–lithosphere interactions in Western Saudi Arabia: Inferences from 3He/4He in xenoliths and lava flows from Harrat Hutaymah

LITHOS
By: , and 

Links

Abstract

Extensive volcanic fields on the western Arabian Plate have erupted intermittently over the last 30 Ma following emplacement of the Afar flood basalts in Ethiopia. In an effort to better understand the origin of this volcanism in western Saudi Arabia, we analyzed3He/4He, and He, CO2 and trace element concentrations in minerals separated from xenoliths and lava flows from Harrat Hutaymah, supplemented with reconnaissance He isotope data from several other volcanic fields (Harrat Al Birk, Harrat Al Kishb and Harrat Ithnayn). Harrat Hutaymah is young (< 850 ka) and the northeasternmost of the volcanic fields. There is a remarkable homogeneity of 3He/4He trapped within most xenoliths, with a weighted mean of 7.54 ± 0.03 RA (2σ, n = 20). This homogeneity occurs over at least eight different xenolith types (including spinel lherzolite, amphibole clinopyroxenite, olivine websterite, clinopyroxenite and garnet websterite), and encompasses ten different volcanic centers within an area of ~ 2500 km2. The homogeneity is caused by volatile equilibration between the xenoliths and fluids derived from their host magma, as fluid inclusions are annealed during the infiltration of vapor-saturated magmas along crystalline grain boundaries. The notable exceptions are the anhydrous spinel lherzolites, which have a lower weighted mean 3He/4He of 6.8 ± 0.3 RA (2σ, n = 2), contain lower concentrations of trapped He, and have a distinctly depleted light rare earth element signature. 3He/4He values of ~ 6.8 RA are also commonly found in spinel lherzolites from harrats Ithnayn, Al Birk, and from Zabargad Island in the Red Sea. Olivine from non-xenolith-bearing lava flows at Hutaymah spans the He isotope range of the xenoliths. The lower 3He/4He in the anhydrous spinel lherzolites appears to be tied to remnant Proterozoic lithosphere prior to metasomatic fluid overprinting.

Elevated 3He/4He in the western harrats has been observed only at Rahat (up to 11.8 RA; Murcia et al., 2013), a volcanic field situated above thinned lithosphere beneath the Makkah-Medinah-Nafud volcanic lineament. Previous work established that spinel lherzolites at Hutaymah are sourced near the lithosphere-asthenosphere boundary (LAB), while other xenolith types there are derived from shallower depths within the lithosphere itself (Thornber, 1992). Helium isotopes are consistent with melts originating near the LAB beneath many of the Arabian harrats, and any magma derived from the Afar mantle plume currently appears to be of minor importance.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Asthenosphere–lithosphere interactions in Western Saudi Arabia: Inferences from 3He/4He in xenoliths and lava flows from Harrat Hutaymah
Series title LITHOS
DOI 10.1016/j.lithos.2016.01.031
Volume 248-251
Year Published 2016
Language English
Publisher Elsevier
Contributing office(s) Volcano Science Center
Description 14 p.
First page 339
Last page 352
Country Saudi Arabia, Yemen
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details