The Impacts of flow alterations to crayfishes in Southeastern Oklahoma, with an emphasis on the mena crayfish (orconectes menae)

By:  and 

Links

Abstract

Human activities can alter the environment to the point that it is unsuitable to the native species resulting in a loss of biodiversity. Ecologists understand the importance of biodiversity and the conservation of vulnerable species. Species that are narrowly endemic are considered to be particularly vulnerable because they often use specific habitats that are highly susceptible to human disturbance. The basic components of species conservation are 1) delineation of the spatial distribution of the species, 2) understanding how the species interacts with its environment, and 3) employing management strategies based on the ecology of the species. In this study, we investigated several crayfish species endemic to the Ouachita Mountains in Oklahoma and Arkansas. We established the spatial distributions (i.e., range) of the crayfish using Maximum Entropy species distribution modeling. We then investigated crayfish habitat use with quantitative sampling and a paired movement study. Finally, we evaluated the ability of crayfish to burrow under different environmental conditions in a controlled laboratory setting. Crayfish distribution at the landscape scale was largely driven by climate, geology and elevation. In general, the endemic crayfish in this study occurred above 300-m elevation where the geology was dominated by sandstone and shale, and rainfall totals were the highest compared to the rest of the study region. Our quantitative data indicated crayfish did not select for specific habitat types at the reach scale; however, crayfish appeared to continue to use shallow and dry habitat even as the streams dried. Movement by passive integrated transponder (PIT) tagged crayfish was highly variable but crayfish tended to burrow in response to drought rather than migrate to wet habitat. Controlled laboratory experiments revealed smaller substrate size (pebble) restricted crayfish burrowing more than larger substrates (cobble). We also found excess fine sediment restricted crayfish burrowing regardless of dominant substrate size. Our results suggest climate change and sedimentation resulting from land-use practices, combined with increased water withdrawals have the potential to alter crayfish distributions and affect persistence of some crayfish populations.

Publication type Report
Publication Subtype Other Government Series
Title The Impacts of flow alterations to crayfishes in Southeastern Oklahoma, with an emphasis on the mena crayfish (orconectes menae)
Series number 105-2014
Year Published 2016
Language English
Publisher U.S. Fish and Wildlife Service
Publisher location OK
Contributing office(s) Coop Res Unit Atlanta
Description ii, 103 p.
Country United States
Google Analytic Metrics Metrics page
Additional publication details