Assimilation efficiencies and turnover rates of trace elements in marine bivalves: A comparison of oysters, clams and mussels

Marine Biology
By: , and 

Links

Abstract

Assimilation efficiencies (AEs) and physiological turnover-rate constants (k) of six trace elements (Ag, Am, Cd, Co, Se, Zn) in four marine bivalves (Crassostrea virginica Gmelin,Macoma balthica Linnaeus, Mercenaria mercenaria Linnaeus, and Mytilus edulis Linnaeus) were measured in radiotracer-depuration experiments. Egestion rates of unassimilated elements were highest during the first 24 h of depuration and declined thereafter. Significant egestion of unassimilated Co, however, continued for up to 5 d in Macoma balthica,Mercenaria mercenaria and Mytilus edulis. With the exception of the extremely low values for110 mAg, 109Cd, and 65Zn in C. virginica, physiological turnover-rate constants (k) showed no general pattern of variation among elements, bivalve species or food types, and were relatively invariant. Values from  ≤0.001 to 0.1 d−1 were observed, but excluding those for Co, most values were  ≤0.04 d−1. In all four species, the AEs of Ag, Am, and Co were generally lower than those of Cd, Se, and Zn. The AEs of Ag, Cd, Se, and Zn in these bivalves are directly related to the proportion of each element in the cytoplasmic fraction of ingested phytoplankton, indicating that >80% of elements in a prey alga's cytoplasm was assimilated. C. virginicaMacoma balthica, and Mercenaria mercenaria assimilated ∼36% of the Ag and Cd associated with the non-cytoplasmic (membrane/organelle) fraction of ingested cells in addition to the cytoplasmic fraction. The ratio of AE:k, which is proportional to the consumer–prey trace-element bioaccumulation factor (concentration in consumer:concentration in prey) was generally greater for Cd, Se, and Zn than for Ag, Am, and Co. This ratio was lowest in Mytilus edulis, suggesting that this bivalve, the most widely employed organism in global biomonitoring, is relatively inefficient at accumulating important elements such as Ag, Cd, and Zn from ingested phytoplankton.

Publication type Article
Publication Subtype Journal Article
Title Assimilation efficiencies and turnover rates of trace elements in marine bivalves: A comparison of oysters, clams and mussels
Series title Marine Biology
DOI 10.1007/s002270050185
Volume 129
Issue 3
Year Published 1997
Language English
Publisher Springer
Contributing office(s) San Francisco Bay-Delta, Toxic Substances Hydrology Program, Pacific Regional Director's Office
Description 10 p.
First page 443
Last page 452
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details