Aptian ‘Shale Gas’ Prospectivity in the Downdip Mississippi Interior Salt Basin, Gulf Coast, USA

By: , and 

Links

Abstract

This study evaluates regional ‘shale gas’ prospectivity of the Aptian section (primarily Pine Island Shale) in the downdip Mississippi Salt Basin (MSB). Previous work by the U.S. Geological Survey estimated a mean undiscovered gas resource of 8.8 trillion cubic feet (TCF) in the chronostratigraphic-equivalent Pearsall Formation in the Maverick Basin of south Texas, where industry has established a moderately successful horizontal gas and liquids play. Wells penetrating the downdip MSB Aptian section at depths of 12,000-15,000 ft were used to correlate formation tops in a 15-well cross-section extending about 200 miles (mi) east-southeastward from Adams Co. to Jackson Co. Legacy cuttings from these wells were analyzed for thermal maturity and source rock quality. Bitumen reflectance (n=53) increases with increasing present-day burial depth in the east-central study area from 1.0% to 1.7%. As the Aptian section shallows in Adams Co. to the west, bitumen Ro values are higher (1.7-2.0%), either from relatively greater heat flux or greater mid-Cenomanian uplift and erosion in this area. Total organic carbon (TOC) content ranges 0.01-1.21 and averages 0.5 wt.% (n=51); pyrolysis output (S2; n=51) averages 0.40 mg HC/g rock, indicating little present-day hydrocarbon-generative potential. Bitumen reflectance is preferred as a thermal maturity parameter as Tmax values are unreliable. Normalized X-ray diffraction (XRD) mineral analyses (n=26) indicate high average clay abundance (53 wt.%) relative to quartz (29%) and carbonate (18%). Mineral content shows a spatial relationship to an Appalachian orogen clastic sediment source, with proximal high clay and quartz and distal high carbonate content. Clastic influx from the Appalachian orogen is confirmed by detrital zircon U-Pb ages with dominant Grenville and Paleozoic components [105 ages from a Rodessa sandstone and 112 ages from a Paluxy (Albian) sandstone]. Preliminary information from fluid inclusion microthermometry (41 aqueous measurements from calcite cements in one argillaceous James Limestone sample) indicates homogenization temperatures (Th) of 120-135°C, consistent with present-day bottom-hole conditions and measured bitumen Ro values towards the western end of the MSB. Downdip in the central MSB, microthermometry (26 aqueous measurements from quartz dust rims in one Paluxy sandstone sample) and measured bitumen Ro values indicate maximum temperatures may have been significantly higher (~25°C) than present-day conditions. High inclusion salinities (15-25 wt.% salt) at both locations suggest interaction of pore fluids with evaporites. Mercury injection capillary pressure (MICP) analyses (n=3) indicate porosity ranges 1.3-2.1% and permeability 0.006-0.02 µD for Pine Island and Rodessa shales. Overall, results from this work indicate generally poor ‘shale gas’ prospectivity compared to other shale reservoirs based primarily on depth, low organic content, low porosity, and high clay content. However, thickness and thermal maturity are appropriate, moderate reservoir pressures are present, and petroleum systems modelling by others has indicated high undiscovered gas potential for the basin as a whole.

Additional publication details

Publication type Conference Paper
Publication Subtype Conference Paper
Title Aptian ‘Shale Gas’ Prospectivity in the Downdip Mississippi Interior Salt Basin, Gulf Coast, USA
DOI 10.15530/urtec-2014-1922696
Year Published 2016
Language English
Publisher Society of Petroleum Engineers
Contributing office(s) Eastern Energy Resources Science Center
Description 9 p.
Larger Work Type Book
Larger Work Subtype Conference publication
Larger Work Title Unconventional Resources Technology Conference Proceedings
Conference Title Unconventional Resources Technology Conference
Conference Location Denver, CO
Conference Date August 25-27, 2014